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Abstract: This paper investigates the design of a unified power flow controller (UPFC) based power oscillations
damping (POD) controller using evolutionary optimization algorithms (EA). It introduces two optimization algo-
rithms: biogeography based optimization (BBO) and particle swarm optimization (PSO), that are used to design
the POD controllers. The optimal set of parameters for the controllers are found using two different objective
functions, eigenvalue based objective function and time based objective function, over a wide range of system
operating points in order to obtain a robust controller. The obtained controllers are then verified and tested over
four different loading conditions of the system with different system parameter uncertainties introduced in each
case.
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1 Introduction
Due to the continuous urban and industrial developments
in many parts in the world in the recent years, the de-
mands on power have increased dramatically. This led
to tremendous increase in size and complexity of inter-
connection of power systems and networks to meet this
surging demand of power.

The interconnection of remote power networks usu-
ally introduce low frequency oscillations in the range of
0.1~3.0 Hz[1]. The oscillatory modes in these systems
results in degradation of the overall performance of the
systems, which necessitates introduction of damping fac-
tor to avoid their excessive growth which could eventu-
ally lead to loss of synchronism [1, 2].

The Limitations of the transmission systems are han-
dled and improved through the use of FACTS devises.
These devices are utilized usually to solve problems as-
sociated with steady state phase of power network re-
sponse, through controlling the transmission system pa-
rameter to force it operate in the vicinity of its thermal
limits. Comparing to power system stabilizers (PSS)
which can cause significant variations in voltage profile
and hence may result in leading power factor under se-
vere disturbances [3]. FACTS controllers exhibit supe-
rior performance in the transient characteristic of power
systems. So, FACTS controllers in known to provide
better solution in damping power system oscillation over
PSS.

Wang in [4], introduced a unified model for FACTS
devices that can be incorporated in Philips-Heffron
model for power system oscillation studies. The study
has investigated the capabilities of Static Var Compen-
sator (SVC), Controllable Series Compensator (CSC),
and Phase Shifters (PS) to damp power system oscilla-
tions in an SMIB system.In [3], a coordinated control of
PSS and SVC was introduced. Several references in lit-
eratures have investigated the capability of the Thyristor
Controlled Series Capacitor (TCSC) to damp the power
system oscillations through different approaches, have
been the focus of investigation of several literatures and
publications.

STATCOM capability to damp power system oscil-
lations was superior to that of SVC [5]. Singular value
decomposition (SVD) approach in investigate the con-
trollability of poorly damped electromechanical modes
via STATCOM input channels was introduced and pre-
sented in [6].

Being the most versatile FACTS controller, the
UPFC had become an interesting field of research for
damping power system oscillations. In [7], a UPFC
based stabilizer was developed to mitigate torsional os-
cillations using shunt converter phase angle as a control
signal. A UPFC model based on the model that was
proposed by Nabavi-Niaki and Iravani was introduced in
[4], in order to incorporate it in Phillips-Heffron model
of power system to study the UPFC capability to damp
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power system oscillations.
Evolutionary optimization algorithms such as ge-

netic algorithm (GA), particle swarm optimization
(PSO), and imperialist algorithm (IA) , also known as a
population based optimization. These type of algorithms,
suggests a population of candidate solutions based on the
constraints of the problem, and as time progresses, the
population evolve to yield a better solution to that prob-
lem.

These algorithms proved to be a useful tool in many
studies for designing FACTS based power oscillation
damping (POD) controller, that provide good response
characteristics. Sidhartha, et al in [8] designed a TCSC
based power system stabilizer using GA. Abido, Al-
Awami, and Abdel-Majed [9, 10, 2] introduced a com-
parison study between UPFC based POD and PSS, where
both of the controller were designed using PSO. The
study also investigated the controllability of the UPFC
different input channel to damp power system oscilla-
tions. It was observed that the shunt converter phase
angle provides better controllability for damping elec-
tromechanical oscillations compared to the other input
channels. In [11], an output feedback UPFC POD con-
troller, in which PSO was used to evaluate time based
objective function in order to find the optimal gains for
the controller. Similarly, chaotic optimization algorithm
(COA) was used in [12] to design an output feedback
UPFC controller. A lead-lag based POD controller was
designed in [13], where IA was used to evaluate an eigen-
value damping ratio objective function was evaluated.

In this paper a biogeography based optimization
(BBO) algorithm, a new population based algorithm, is
considered to design a POD controller. BBO is used
to evaluate an eigenvalue damping ratio based objective
function in order to determine the optimal gain and time
constants of a two stage lead-lag controller. The results
were compared with a PSO based POD controller, in or-
der to investigate its capability in finding the optimal con-
troller parameters.

2 System Modeling

2.1 Power System and Unified Power Flow
Controller Model

The system considered in this paper is illustrated in
Figure.1, which shows a single machine infinite bus
(SMIB) system with double transmission line circuits
equipped with a UPFC. The UPFC consists of two three
phase GTO based voltage source converters (VSC) con-
nected back to back through a common DC link ca-
pacitor. The shunt converter or the excitation con-
verter is coupled to the system through an excitation
transformer (ET). The series converter or the boosting

converter is coupled to the system through a boosting
trasnformer(BT).

Figure 1: SMIB power system equipped with UPFC

By applying Park’s transformation, and by neglect-
ing the resistances and transients of the excitation and
boosting transformers the UPFC can be modeled as[9, 7,
4]: ∣∣∣∣vEtdvEtq

∣∣∣∣ =

∣∣∣∣ 0 xE
−xE 0

∣∣∣∣ ∣∣∣∣iEdiEq

∣∣∣∣+
mEvdc

2

∣∣∣∣cos δE
sin δE

∣∣∣∣ (1)
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3mB
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∣∣∣∣ (3)

where
vEt: Excitation transformer voltage
iE : Excitation current
vBt: Boosting transformer voltage
iB: Boosting current
Cdc: DC link capacitance
vdc: DC link voltage The UPFC has four control in-

put signals where mE and δE are the excitation branch
amplitude and phase angles respectively, and mB and δB
are the boosting branch amplitude and phase angle re-
spectively.

The nonlinear model of the generator shown in figure
1 is given as:

dδ

dt
= ωB (ω − 1) (4)

dω

dt
=

1

M
(−D (ω − 1) + Pm − Pe) (5)

dE′q
dt

=
1

T ′do

(
−E′q + Efd −

(
xd − x′d

)
id
)

(6)

dEfd
dt

=
1

TA
(−Efd +KA (Vref − Vt)) (7)

where :
Pe = vdid + vqiq, vq = E′q − x′did, vd = xqiq ,Vt =√(
v2d + v2q

)
,
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id = iTLd + iEd + iBd, and iq = iTLq + iEq + iBq

From the above equations, the network currents can
be rewritten as:

iTLd =
1

xt1

(
xEiEd +

mEvdc
2

sin δE − Vb cos δ
)

(8)

iTLq =
1

xt1

(
xEiEq −

mEvdc
2

cos δE + Vb sin δ
)

(9)

iEd =
xBB
xd2

E′q + xd7
mBvdc

2
sin δB + xd5Vb cos δ

+ xd6
mEvdc

2
sin δE (10)

iEq = xq7
mBvdc

2
cos δB + xq5Vb sin δ

+ xq6
mEvdc

2
cos δE (11)

iBd =
xE
xd2

E′q −
xd1
xd2

mBvdc
2

sin δB + xd3Vb cos δ

+ xd4
mEvdc

2
sin δE (12)

iBq =
xq1
xq2

mBvdc
2

cos δB + xq3Vb sin δ

+ xq4
mEvdc

2
cos δE (13)

where xE and xB represents the leakage reactances
of ET and BT respectively, while xBB , xd1 − xd7 , and
xq1 − xq7 are given in [10].

2.2 System Linearized Model
A linearised model is determined to suite the design ap-
proach considered in this paper. This is necessary to fa-
cilitate the assessment of the stability of the system, and
to construct an objective function based on the system
eigenvalues. For this purpose, the system is linearized
around different operating points, and the linear model
yield is given by:

ẋ = Ax+B u (14)

where x is the state vector and u is the input vector :

x =
[
∆δ ∆ω ∆E′q ∆Efd ∆vdc

]T (15)

u =
[
∆mE ∆δE ∆mB ∆δB

]
(16)

where A and B are:

A =


0 ωB 0 0 0

−K1
M

− D
M

−K2
M

0 −Kpd
M

− K4
T ′
do

0 − K3
T ′
do

1
T ′
d0

−Kqd
T ′
do

−KAK5
TA

0 −KAK6
TA

− 1
TA

−KAKvd
TA

K7 0 K8 0 −K9

 (17)

B =


0 0 0 0

−Kpe
M

−Kpδe
M

−Kpb
M

−Kpδb
M

−Kqe
T ′
do

−Kqδe
T ′
do

−Kqb
T ′
do

−Kqδb
T ′
do

−KAKve
TA

−KAKvδe
TA

−KAKvb
TA

−KAKvδb
TA

Kce Kcδe Kcb Kcδb

 (18)

whereK1−K9,Kpu,Kqu, andKcu are the lineariza-
tion constants.

2.3 UPFC - based Damping Controller
The structure of the POD controller is shown in Figure.2.
It consists of a washout circuit which is provided to elim-
inate the steady state bias from the output of the damping
controller, cascaded with lead-lag compensator.

u u

Figure 2: UPFC Based Damping Controller

The three term PID controllers, as dynamic compen-
sator in power system stabilizers, is widely implemented
in reducing system damping oscillations. . In [14], a
PID controller design based on particle swarm optimiza-
tion for a multimachine system were successfully imple-
mented. In this paper the two stage lead-lag compensator
is used. The transfer function of the two stages controller
is given by:

T (s) = Kp
(1 + sT1)

(1 + sT2)

(1 + sT3)

(1 + sT4)
(19)

The control signal u of the UPFC can be any of the
input signals mE , δE , mB ,or δB . Based on [9, 10, 2],
a singular variable decomposition was applied to mea-
sure the controllability of the electromechanical (EM)
mode, and it was found that δE had the best controlla-
bility measurement compared to the other UPFC control
signals. Thus it is logical to consider δE as the control
signal when designing a damping controller.

2.4 Objective Function
2.4.1 Eigenvalue Damping Coefficients Based Ob-

jective Function

In this approach, the damping coefficients of the domi-
nant eigenvalues are to be maximized.. Then the damp-
ing coefficient ζi of the i-th eigenvalue is defined through
the following equation 20:

ζi = − αi√
α2
i + β2

i

(20)

Where αi and βi are the real and imaginary parts of
the dominant eigenvalue respectively. A system with a
damping for all eigenvalues greater than 5% is consid-
ered to be a well damped power system [15]. Therefore,
The problem is formulized such that to achieve a damp-
ing for all eigenvalues greater than 5% over the range of
the operating points, by the optimization process.

Let Ξp be a vector of the damping factors of all
eigenvalues of the p-th operating point in the set, where
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p = 1, 2, .., n for n operating points. Then the objective
function to be maximized is:

max Je (21)

where Je = min (min (Ξp))

2.4.2 Time Based Objective Function

For a robust tuning using the ITAE criterion, the objec-
tive function for set of operating points is formulated as:

min Jt (22)

where:

Jt =

p∑
i=1

(∫
t|∆ωi|dt

)
(23)

To indirectly limit the control action of the result-
ing controllers from reaching saturation, both objective
functions considered above are subjected to the follow-
ing constraints:

Kpmin ≤ Kp ≤ Kpmax

T1mn ≤ T1 ≤ T1max

T2min ≤ T2 ≤ T2max (24)

T3min ≤ T3 ≤ T3max

T4min ≤ T4 ≤ T4max

In both cases only a DC voltage regulator is incor-
porated in the system in order to stabilize the DC link
voltage. The parameters for the DC regulator are ob-
tained beforehand and kept constant during the optimiza-
tion process.

3 Optimization Algorithms
3.1 Biogeography Based Optimization
Biogeography-Based Optimization (BBO), introduced
by Simon[16] is a population based stochastic based evo-
lutionary algorithm. Based on island biogeography the-
ory, that is the nature way to achieve optimal condition
of life through the distribution of species among islands.
This can be translated to a mathematical optimization
problem, in which a number of candidate solutions re-
ferred to as population and each solution from the popu-
lation is termed as an individual. An individual that per-
forms well on the objective function is analogous to an
island that attracts different spices and it is said to have
high suitability index (HSI), and the individuals that per-
form poor on the objective function are analogous to low
HSI islands where it attracts lower number of species.

The mathematical model of biogeography describes
the immigration and emigration of species from an is-
land. Islands with high HSI have high emigration rates
and low immigration rates, due to the high population of

species in that island. Low HSI islands have low emi-
gration rates and high immigration rates and that is due
to the large space and low species in these islands. The
factors that characterize the HSI of an island are called
suitability index variables (SIV), and the include vege-
tative diversity, rain fall, topographic diversity, land area
and temperature.

If an optimization problem was to be solved us-
ing BBO, the independent variables of the problem are
analogus to the SIV of an island, and the solutions for
that proposed individual is the HSI of such an island.
As in biogeography theory that high HSI islands hav-
ing lower immigration rate thus it will be more reluc-
tant to change than the low HSI islanfs having immigra-
tion rates. Therefore, a good individual will have low
tendency to change than poor individuals. On the other
hand, the high HSI islands have high emigration rate and
hence tendency to share its features with the low HSI
islands having low emigration rates. Thus, the good in-
dividuals will share its features with the poor individu-
als. The addition of new features to poor individuals may
raise the quality of those individuals.

MacArthur and Wilson [17], has illustrated the
model of species abundance on a single island as shown
in figure (3). Immigration rate λ and emigration rates are
functions of the number of species in the island.

I

E

S0 Smax

immigration 

l

emigration 

m

Number of species

R
at

e

Figure 3: Species migration model of an island, based on
[MacArthur and Wilson,1967[17]]

In BBO each individual is represented by an iden-
tical species count curve with E = I for simplicity, as
illustrated in figure (4). The migration model shown be-
low is called a linear migration model where λand µare
both linear functions of the cost.
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E=I

S1 S2

immigration 

l
emigration 

m

Objective 

R
at

e

Figure 4: BBO individual species count curve with E =
I

BBO has two major operations:

3.1.1 BBO Migration
Consider the following constrained optimization prob-
lem:

min
xεRn

f (x) (25)

where x = [x1, x2, · · · , xn]T .
x would be an individual which is analogous to an

island, and x1, x2, · · · , xn would be analogous to SIV of
an island. Hence when an migration occurs the SIV’s
of an island will either immigrate to the individual or
the will emigrate from the individual. In BBO a use
of migration rates of each individual to probabilistically
share information between individuals. There are dif-
ferent ways to implement migration in BBO, but in this
study the original BBO developed in [16] will be used
which is referred to as partial immigration based.

Suppose that there are a population of size N and
that xk is the k-th individual in the population where
k ∈ [1, N ], and the size of the optimization problem is n.
xk(s) is the s-th independent variable in the individual,
where s ∈ [1, n]. Based on the cost function evaluation
the immigration probability λk, is given for the k-th in-
dividual and for all of its solution features s ∈ [1, n], so
in each generation there would be a probability of λkthat
this individual will be replaced.

Once a solution feature is selected to be replaced,
then selection of the emigrating solution feature is done
based on the emigrating probability of that individual
{µi}.

3.1.2 BBO Mutation
In BBO there are two main operators , i.e, migration and
mutation. Simon [16], has referred to mutation of SIV
to be analogous to the introduction of an excursion to a
habitat that will drive it away from its equilibrium point

and that can happen randomly. An example is the arrival
of large piece of flotsam to the island. Mutation rates are
determined through the species count probabilities using
equation (26).

Ṗs =


− (λs + µs)Ps + µs+1Ps+1 S = 0

− (λs + µs)Ps + λs−1Ps−1 + µs+1Ps+1 1 ≤ S ≤ Smax−1

− (λs + µs)Ps + λs−1Ps−1 S = Smax
(26)

From figure (4), it can be seen that for low species
count and high species count both have relatively low
probabilities. While for medium species count they have
high probabilities for change as they are near the equilib-
rium point.

The mutation rates can be found as:

mi = mmax

(
1− Pi

Pmax

)
(27)

where
mi : the i-th individual mutation rate
mmax : the maximum mutation rate, typical between

and.
Pi : i-th individual species count probability
Pmax : Maximum species count probability from all

individuals

3.2 Particle Swarm Optimization

Particle swarm optimization (PSO) was introduced by
Kennedy and Eberhart in 1995, [18]. PSO is a popu-
lation based iterative search algorithm that manipulates
a number of candidate solutions, referred to as parti-
cles, in order to find the optimum. The PSO was dis-
covered through simulation of simple social models. It
imitates the swarm behavior such as birds flocking and
fish schooling, and this behavior is referred to as swarm
intelligence[19].

This algorithm searches the space of an objective
function by adjusting the trajectories of individual parti-
cles, as these trajectories form piecewise path in a quasi-
stochastic manner. The movement of a swarming parti-
cles consists of two major components: stochastic com-
ponent and a deterministic component. Each particle is
attracted toward the position of the current global best
gbest and it own personal best location pbest in history,
while in the same time it has tendency to move randomly
[19].

4 Simulation Results

The above two objective functions were considered in the
design process of UPFC based damping controller with
30 different operating conditions. The resulting four con-
trollers were then tested at 4 different loading conditions
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of the system, with different system uncertainties given
in table 1, to investigate system robustness.

Table 1: Controller testing loading conditions with sys-
tem uncertainties

Loading Condition Pe Qe System Parameter uncertainty

Light 0.30 0.015 30% increase in line reactance xt1

Nominal 1.0 0.015 No parameter uncertainty

Heavy 1.1 0.4 25% increase in machine inertiaM

Leading power factor 0.7 -0.03 30% increase in field time constant T ′
do

For both objective functions and for the two op-
timization algorithms, the initialization was performed
with 100 generations and a population of 100 individu-
als. The maximum mutation rate for BBO was set to be
0.005 while the acceleration coefficients for PSO c1 =
c2 = 2.05, where the inertia weighting was set as linear
function of the generation as it decreases from 0.9 to 0.4
during generation progress.

Figures 5 and 6, illustrates the convergence charac-
teristics of the two optimization algorithms for the two
objective functions:

Figure 5: Convergence characteristics of BBO and PSO
for a ζ - based objective function

The obtained parameters of the damping controller
for each case is given in table 2 below:

The controllers were tested for a 10% step increase
in generator mechanical input power Pm at the four load-
ing condition mentioned in table 1.

4.1 Controller Characteristics

As mentioned above that the POD controller is a lead
lag compensator, where the structure of the controller is
given in figure 19. Each controller will have two real
zeros and two real poles, and they are given in table 3:

Figure 6: Convergence characteristics of BBO and PSO
for ITAE based objective function

Table 2: Optimal parameter setting of the damping con-
troller using BBO and PSO for the two objective function

BBO PSO

damping Based ITEA - Based damping Based ITAE - Based

Kp -98.5099 -94.8712 -89.8943 -98.9509

T1 1.0814 0.0143 0.0578 1.4550

T2 0.5190 0.3284 0.6519 0.6472

T3 0.0520 0.7778 1.4808 0.0544

T4 0.6451 0.7126 0.6807 0.7519

J 0.3005 0.3003 0.1231 0.0920

Table 3: POD controllers poles and zeros
Controller poles (p) Controller zeros (z)

BBO damping based
p1= 1.9268

p2=1.5501

z1= -0.9247

z2= -19.2307

PSO damping based
p1= -1.5340

p2=-1.4690

z1= -17.3010

z2= -0.6753

BBO ITAE based
p1= -3.045

p2=-1.4033

z1=-69.9300

z2= -1.2856

PSO ITAE based
p1= -1.5451

p2=-1.3300

z1=-0.6873

z2= -18.3824

The controllers frequency responses are illustrated in
figure 7. It can be observed that the lag part of the con-
troller dominates at low frequencies and exhibits magni-
tude response similar to that of a lag compensator. The
controllers suppress the high frequency components of
the signal (transient phase) and increase loop gain, and
which is in line with the objective of smoothening and
damping the low frequency oscillations and improve the
steady state response. Thus, as the lag action is dom-
inant, it acts as and mimics the behavior of an integral
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action of the PID controller, and hence eliminating the
steady state error.

Figure 7: Controllers magnitude and phase responses

4.2 Light Loading

The system response for the disturbance under generator
light loading condition with system uncertainty (30% in-
crease in xt1) for the four controllers is given in figures 8
to 10:

Figure 8: System dynamic response under light loading
- Deviation in rotor angular speed ∆ω

Figure 9: System dynamic response under light loading
- Generator rotor angle δ

Figure 10: System dynamic response under light load-
ing - UPFC excitation converter phase angle δE (control
signal)

The responses of the controllers are illustrated in ta-
ble 4:

It is evidence that the BBO ITAE based controller
has the lowest settling time from table4 compared to the
other controllers. On the other hand, it can be seen from
figures 8 to 9 ,that the system response exhibits transient
oscillations with this controller, which is due to the low
damping coefficient ζ of the system.

4.3 Nominal Loading

Figures 11 to 13, illustrates the system response of the
tuned controllers under nominal loading conditions. The
system is simulated for a 10% step change disturbance in
Pm with no parameter uncertainties introduced.
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Table 4: System performance under light loading

Settling time

ts

Maximum

peak (Mp)

EM modes and

damping ζ

BBO

damping

based

1.1470 0.0005
mode

=−2.75± j6.93

ζ = 0.3685

PSO

damping

based

1.1206 0.0005
mode

=−2.72± j6.51

ζ = 0.3861

BBO ITAE

based
1.0305 0.0006

mode =
−1.57± j7.05

ζ = 0.2178

PSO ITAE

based
1.0820 0.0005

mode
=−2.36± j6.50

ζ = 0.3410

Figure 11: System dynamic response under nominal
loading - Deviation in rotor angular speed ∆ω

Figure 12: System dynamic response under nominal
loading - Generator rotor angle \delta

The controllers performance characteristics are
given in table 5:

Figure 13: System dynamic response under nominal
loading - UPFC excitation converter phase angle δE

Table 5: System performance under nominal loading
Settling time

ts

Maximum

peak (Mp)

EM modes and

damping ζ

BBO

damping

based

2.0067 0.0017
mode

=−2.84± j7.35

ζ = 0.3608

PSO

damping

based

1.1739 0.0017
mode

=−2.85± j6.88

ζ = 0.3831

BBO ITAE

based
2.0790 0.0019

mode =
−1.46± j7.48

ζ = 0.1911

PSO ITAE

based
1.1143 0.0017

mode
=−2.44 + j6.87

ζ = 0.3342

Figures 11 and 12 show the system response under
nominal loading for all of the controllers, where figure
13 shows the control signal δE to the system. It can be
seen the BBO ITAE based controller has the lowest per-
formance compared to other schemes, the highest settling
time and lowest damping factor ζ which is translated as
an oscillatory system response. On the other hand, the
PSO based controllers, ITAE and the damping based, has
the best system performance compared to the BBO based
controllers.

4.4 Heavy Loading

In Figures 14 and 15 the system response for a 10% step
change in input mechanical power Pm under heavy load-
ing with a 25% change in the moment of inertia of the
generator M are shown. Figure 16, illustrates the con-
troller output signal δE , which is the phase angle of the
excitation converter of the UPFC.
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Figure 14: System dynamic response under heavy load-
ing - Deviation in rotor angular speed ∆ω

Figure 15: System dynamic response under heavy load-
ing - Generator rotor angle δ

Figure 16: System dynamic response under heavy load-
ing - UPFC excitation converter phase angle δE

The controllers performance criteria are given in ta-
ble 6:

From the system responses in figures 14 and 15
and from table 6, it can be seen that PSO tuned con-

Table 6: System performance under heavy loading
Settling time

ts

Maximum

peak (Mp)

EM modes and

damping ζ

BBO

damping

based

2.1244 0.0016

mode

=−3.07± j6.94

ζ = 0.3702

PSO

damping

based

1.9833 0.0016

mode

=−3.08 + j6.44

ζ = 0.4279

BBO ITAE

based
2.0952 0.0017

mode

=−1.76± j7.09

ζ = 0.2403

PSO ITAE

based
1.2239 0.0016

mode

=−2.65± j6.40

ζ = 0.3823

trollers yield a better performance in terms of the damp-
ing and settling time when compared with BBO tuned
controllers. Moreover, the BBO ITAE tuned controller
has less settling than the BBO damping based tuned
controller, however the damping based controller has
greater damping factor as evident from the system re-
sponse where the BBO ITAE tuned controller has some
oscillations before settling to zero.

4.5 Leading Power Factor Loading

Under leading power factor loading condition (Pe =
0.7p.u, Qe = −0.03 p.u), the system is disturbed by a
10% step change in Pm. The results that were obtained
for the system response for each of the designed con-
troller are given in figures 17 and 18. The controller ac-
tion is also given in figure 19.

Figure 17: System dynamic response under leading load-
ing - Deviation in rotor angular speed ∆ω
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Figure 18: System dynamic response under leading load-
ing - Generator rotor angle δ

Figure 19: System dynamic response under leading load-
ing - UPFC excitation converter phase angle δE

The controllers performance are given in table 7:

Table 7: System performance under leading loading
Settling time

ts

Maximum

peak (Mp)

EM modes and

damping ζ

BBO

damping

based

1.2105 0.0012
mode

=−2.82± j6.94

ζ = 0.3769

PSO

damping

based

1.1702 0.0012
mode

=−2.78± j6.44

ζ = 0.3955

BBO ITAE

based
1.3993 0.0014

mode
=−1.52± j7.14

ζ = 0.2084

PSO ITAE

based
1.1020 0.0012

mode
=−2.35± j6.48

ζ = 0.3405

From the results obtained from the simulation, it can
be seen that PSO tuned controllers are superior to the

BBO tuned controllers in terms of damping and settling
time.

5 Conclusion
This paper presented a comparison study between two
evolutionary optimization algorithms, namely, biogeog-
raphy based optimization (BBO) and particle swarm op-
timization (PSO) , in designing a UPFC based power
oscillation damping controller. The designed POD con-
trollers were tuned via two different objective functions,
the eigenvalue damping factor based objective function,
and the ITAE based objective function. It was shown
that the performance of algorithms vary based on the ob-
jective function used, where for a damping factor based
objective function the performance of BBO and PSO is
almost similar. On the other hand, the performance of
the algorithms varied for the ITAE based objective func-
tion where PSO showed a better performance compared
to BBO. The yielded controllers are then compared based
on the controlled system characteristics and the perfor-
mance. To assess the robustness of the resulting con-
trollers, system is simulated for different generator load-
ing conditions. The controllers were able to maintain the
stability of the system at each of the loading conditions,
with some variation in the performance for each case.

System Data

Generator Data: xd = 1; xq = 0.3; x′d = 0.3; D = 0;
M = 10; T ′

do = 5.044; ωB = 100π; Vt = 1.05
Transmission line: xT = 0.1; xt1 = 0.6;xBv = 0.6
UPFC : xE = 0.1; xB = 0.1; Cdc = 3; Vdc = 2; DC

voltage regulator: kdi = −0.10; kdp = −6.05
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